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Abstract

Analytical formulations are presented which account for the coupled mechanical, electrical, and thermal response
of piezoelectric composite shell structures. A new mixed multi-®eld laminate theory is developed which combines
``single layer'' assumptions for the displacements along with layerwise ®elds for the electric potential and

temperature. This laminate theory is formulated using curvilinear coordinates and is based on the principles of
linear thermopiezoelectricity. The mechanics has the inherent capability to explicitly model both the active and
sensory responses of piezoelectric composite shells in thermal environments. Finite element equations are derived

and implemented for an eight-noded shell element. Numerical studies are conducted to investigate both the sensory
and active responses of piezoelectric composite shell structures subjected to thermal loads. Results for a cantilevered
plate with an attached piezoelectric layer are compared with corresponding results from a commercial ®nite element

code and a previously developed program. Additional studies are conducted on a cylindrical shell with an attached
piezoelectric layer to demonstrate capabilities to achieve thermal shape control on curved piezoelectric
structures. Published by Elsevier Science Ltd.

Keywords: Adaptive structures; Composite materials; Finite element; Laminates; Piezoelectric; Shell; Smart structures;

Thermopiezoelectric

1. Introduction

The potential performance advantages from utilizing smart structural components in advanced
aerospace applications has lead to the extensive recent development of both analytical and experimental
methods to characterize the behavior of these materials. Rogers (1993), Crawley (1994) and Rao and
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Sunar (1994) provide detailed overviews on the current state of smart structure technology. Piezoelectric
materials represent one of the more common materials currently being investigated for smart structures
applications due to their inherent capability to be utilized as both actuators and sensors. Of practical
interest are curved piezoelectric composite shells, since these con®gurations are most commonly used in
various aerospace structural applications. In addition, most aerospace applications involve operations in
changing thermal environments. Thus, in order to e�ectively and accurately characterize the response of
smart structures with piezoelectric materials, the coupling e�ects from both the curvilinear geometry and
thermopiezoelectricity must be accounted for in the analysis.

Numerous theories and models have been proposed to analyze piezoelectric composite beams, plates,
shells, and solids. Saravanos and Heyliger (1999) provide a comprehensive review and classi®cation of
these analytical models, consequently only a brief review concerning piezoelectric shells is provided
herein. Docmeci (1990) investigated the vibration of single layered piezoelectric shells. Lammering (1991)
developed a Reissner-Mindlin shear deformable shell ®nite element, while Tzou and Gadre (1989)
derived equations for thin piezoelectric shells based on the Kircho�-Love hypothesis. Shell formulations
and ®nite elements which explicitly account for the piezoelectric coupling have also been reported. Tzou
and Ye (1996) modeled piezoelectric shells as a layerwise assembly of triangular elements. Heyliger et al.
(1996) developed a discrete-layer laminated piezoelectric shell element. Saravanos (1997) implemented a
mixed shear-layerwise theory for piezoelectric shells.

Limited research has been performed to assess the implications of thermal e�ects on piezoelectric
composite shells. Tauchert (1992) constructed a piezoelectric plate theory for thermal behavior based on
Kircho�'s assumptions in which the charge equation was not considered. Rao and Sunar (1993)
developed a general ®nite element formulation for thermopiezoelectric plates. Tzou and Howard (1994)
and Tzou and Bao (1995) postulated consistent, yet uncoupled, formulations for thin, shallow
thermopiezoelectric shells based on classical laminate theory assumptions. Chandrashekhara and Kolli
(1995) presented an uncoupled ®rst-order shear ®nite element formulation for shallow piezoelectric
composite shells under thermal loads. Tzou and Ye (1994) developed a three-dimensional ®nite element
for thin thermopiezoelectric solids. Tzou and Bao (1997) included large-rotation geometric nonlinearity
into their previously developed uncoupled models for thermal piezoelectric shells. Lee and Saravanos
(1996, 1997) developed electromechanically coupled mechanics and ®nite elements for thermal laminated
composite piezoelectric beams and plates, respectively, which use layerwise approximations for the
displacements, electric potentials and temperature ®elds. Exact solutions for speci®c con®gurations of
thermopiezoelectric plates and cylindrical shells have been reported by Dube et al. (1996a, 1996b), Xu
and Noor (1996), Xu et al. (1997) and Choi et al. (1997).

Generally, most of the works described use approximate uncoupled models to account for the
behavior of thermopiezoelectric laminated shells. However, neglecting the piezoelectric coupling that
arises from the pyroelectric and thermal expansion coe�cients can lead to substantial errors in
predicting the structural response. Thus, this paper extends a coupled piezoelectric shell theory
developed by Saravanos (1997) to incorporate thermal e�ects. The updated formulation has the
capability to accurately predict the mechanical, electrical, and thermal response of thin and
intermediately thick piezoelectric composite shells. The coupled behavior is captured at the material level
through the thermopiezoelectric constitutive equations and the governing equations are formulated and
solved in curvilinear coordinates. The mechanics incorporate di�erent types of through-the-thickness
kinematic approximations for all ®eld variables. First-order shear theory assumptions are used for the
displacements, while discrete-layer theory approximations are implemented for the electric potential and
temperature. The combination of mixed through-the-thickness approximations for the displacement,
electric potential and temperature is a unique feature of the ``mixed piezothermoelastic shell theory''
(MPST) which enables the accurate analysis of thin and moderately thick piezoelectric shells.

The accuracy of the MPST has been demonstrated in previous works. Saravanos (1997) compared the
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free vibration response of a simply supported cross-ply composite plate with attached piezoelectric layers
using the MPST and exact solutions. Good agreement was observed between the two methods for a thin
plate with an aspect ratio of 50. Although the MPST is not intended for thick structures, additional
comparisons were also conducted on a thick plate with an aspect ratio of 4. Larger discrepancies in the
displacement predictions were observed between the two methods. However, even for the thick plate the
MPST was able to accurately capture the electric potential response. A more comprehensive comparison
of the MPST was also conducted using exact solutions, a single layer piezoelectric laminate theory, and
two di�erent layerwise theories by Saravanos and Heyliger (1999). A variety of di�erent aspect ratios
were examined for three di�erent electromechanical con®gurations of a simply supported composite
plate with attached piezoelectric layers. The results of this study demonstrate the e�ectiveness of the
MPST in accurately predicting the behavior of thin and moderately thick piezoelectric shells, as well as
the additional accuracy in determining the electric potentials.

2. Thermopiezoelectric laminated shells

This section describes the analytical formulation for curvilinear thermopiezoelectric laminates with
embedded sensory and active piezoelectric layers. The curvilinear laminate con®guration is shown
schematically in Fig. 1. Each ply of the laminate remains parallel to a reference curvilinear surface Ao:
An orthogonal curvilinear coordinate system �OxZz is de®ned, such that the axes x and Z lie on the
curvilinear reference surface Ao, while the axis z remains straight and perpendicular to the layers of the
laminate. A global Cartesian coordinate system Oxyz is used to de®ne Ao, hence, a point r � �x, y, z� on
the curvilinear laminate is,

r�x, Z, z� � ro�x, Z� � zẑ �1�
where ro��xo, yo, zo� are the Cartesian coordinates of the reference surface Ao, and ẑ indicates the unit
vector perpendicular to the reference surface.

Fig. 1. Curvilinear piezoelectric laminate and coordinate system.
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2.1. Governing material equations

Each ply is assumed to consist of a linear piezoelectric material with properties de®ned in the
orthogonal curvilinear system �OxZz with constitutive equations of the following form,

si � C E
ij Sj ÿ eikEk ÿ liy

Dl � eljSj � eSlkEk � pky �2�
where i, j � 1, . . . ,6 and k, l � 1, . . . ,3; si and Si are the mechanical stresses and engineering strains in
vectorial notation; Ek is the electric ®eld vector; Dl is the electric displacement vector; Cij is the elastic
compliance and sti�ness tensors; elj is the piezoelectric tensor; elk is the electric permittivity tensor of the
material; li is the thermal expansion vector; y � DT � Tÿ To is the temperature di�erence from the
thermally stress free reference temperature To; and pk is the pyroelectric vector. Superscripts E and S
indicate constant electric ®eld and strain conditions, respectively. The axes 1, 2, and 3 of the material
are parallel to the curvilinear axes x, Z, and z, respectively. The materials are assumed to be monoclinic
class 2 crystals with a diad axis parallel to the z axis. The assumed material class is general enough, such
that Eq. (2) may encompass the behavior of o�-axis homogenized piezoelectric plies, as well as the
passive composite plies. The tensorial strain Sij and electric ®eld components in a curvilinear coordinate
system are related to the displacements and electric potential, respectively (Saravanos, 1997).

2.2. Mixed multi-®eld laminate theory

The proposed thermopiezoelectric shell theory combines linear displacement ®elds through the
thickness of the laminate for the displacements u, v (along the x and Z axes, respectively) with layerwise
electric potential and temperature ®elds through the laminate, consisting of N discrete continuous

Fig. 2. Typical piezoelectric laminate con®guration. (a) Concept. (b) Assumed through-the-thickness displacement, electric poten-

tial, and temperature ®elds.
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segments (see Fig. 2). Previous works by Lee and Saravanos (1996, 1997) on layerwise theories for
thermal piezoelectric beams and plates has demonstrated the advantages and necessity of layerwise
approaches for capturing the complex electric ®elds and interactions which are present in piezoelectric
actuators and sensors. Consequently, the present mixed MPST will entail the capability to (1) accurately
and e�ciently model thin and moderately thick laminated piezoelectric shells with arbitrary laminations
and electric con®gurations, (2) capture the through-the-thickness electric heterogeneity induced by the
embedded piezoelectric sensors and actuators, and (3) represent the changing thermal gradients through
the laminate plies.

The discrete-layer kinematic assumption e�ectively subdivides the laminate into Nÿ 1 sublaminates
(or discrete-layers). A continuous linear electric potential and temperature variation is assumed in each
sublaminate, such that a Co continuity results through-the-thickness of the laminate (see Fig. 2). In this
formulation, the subdivision can be arbitrarily altered according to the con®guration of the piezoelectric
layers or the desired level of approximation. Thus, the resulting ``zig-zag'' shape of the approximation
can be a-priori controlled to vary the detail of approximation from a single-layer to a ®nely graded ®eld.
The various ®eld variables are approximated by the following form,

u�x, Z, z, t� � uo�x, Z, t� � zbx�x, Z, t�

v�x, Z, z, t� � vo�x, Z, t� � zbZ�x, Z, t�

w�x, Z, z, t� � wo�x, Z, t�

f�x, Z, z, t� �
XN
j�1

f j�x, Z, t�C j�z�

y�x, Z, z, t� �
XN
j�1

y j�x, Z, t�C j�z� �3�

where uo, vo, wo are displacements along the x, Z and z axes, respectively, on the reference surface Ao;
superscript j indicates the points z j at the beginning and end of each discrete layer; f j and y j are the
electric potential and temperature at each point z j, respectively (see Fig. 2); C j�z� are interpolation
functions; and bx, bZ are the rotation angles de®ned as,

bx � ÿ
wo
,x

go11
� uo

R1
, bZ � ÿ

wo
,Z

go22
� vo

R2
�4�

where Ri are the local radii of curvature (Fig. 1). Linear interpolation functions C�z� are considered in
this paper.

The Love's assumption for shallow shells is further implemented, i.e. the local radii of the shell are
substantially higher than the thickness �h=Ri � 1), yielding �1� z=Ri11). In the context of Eq. (3), the
engineering strains become

Si�x, Z, z, t� � So
i �x, Z, t� � zki�x, Z, t� i � 1, 2, 6

S3�x, Z, z, t� � 0
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Si�x, Z, z, t� � So
i �x, Z, t� i � 4, 5 �5�

where So and k are the strain and curvatures at the reference surface, de®ned as follows:

So
1 �

1

go11

 
uo,x �

go11, Z
go22

v0

!
� wo

R1
, So

2 �
1

go22

 
vo,Z �

go22, x
go11

uo

!
� wo

R2

So
6 �

1

go11

�
vo,x ÿ

go11, Z

g22
uo
�
� 1

go22

�
uo,Z ÿ

go22, x
g11

vo
�

So
4 � bZ �

wo
,Z

go22
ÿ vo

R2
, So

5 � bx �
wo
,x

go11
ÿ uo

R1
�6�

k1 � 1

go11

 
bx, x �

go11, Z
go22

bZ

!
, k2 � 1

go22

 
bZ, Z �

go22, x
go11

bx

!

k6 � 1

go11

 
bZ, x ÿ

go11, Z

go22
bx

!
� 1

go22

 
bx, Z ÿ

go22, x
go11

bZ

!
�7�

where Ri are the local radii of curvature, and go11, g
o
22 are the components of the metric tensor on the

surface Ao�z � 0� de®ned as go11�
��������������������������������������
x 2
o; x � y2

o; x � z2o; x

q
and go22�

��������������������������������������
x 2
o; Z � y2

o; Z � z2o; Z

q
:

The electric ®eld vector also becomes,

Ei�x, Z, z, t� �
XN
j�1

E j
i �x, Z, t�C j�z� i � 1, 2

E3�x, Z, z, t� �
XN
j�1

E j
3 �x, Z, t�C j

,z�z� �8�

where fE j g is the generalized electric ®eld vector de®ned as:

E j
1 � ÿ

F j
,x

go11
E j

2 � ÿ
F j

,Z

go22
E j

3 � ÿF j �9�

2.3. Equations of motion

The variational form of the equations of motion in the orthogonal curvilinear system is,�
V

�ÿ dH�S, E� ÿ dT
	jJj dx dZ dz�

�
GS

duTi �ti �
�
GD

df �D dS � 0 �10�

where dH is the variation of the electric enthalpy and dT the variation of the kinetic energy, de®ned as,

dH � dSisi ÿ dEkDk � dSiCijSj ÿ dSieilEl ÿ dSiliyÿ dEkekjSj ÿ dEkeklEl ÿ dEkpky
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dT � ÿduiri _ui �11�

�t and �D are respectively the surface tractions and electric displacement acting on surfaces GS and GD,
respectively.

�ti � sijn̂j, �D � Djn̂j, i, j � 1, . . . ,3 �12�

[J ] is the Jacobean matrix of the transformation between the global cartesian and curvilinear system.
For the curvilinear system �OxZz the determinant of the Jacobean takes the form:

jJj � j@ �x, y, z�
@�x, Z, z� j ÿ go11g

o
22

�
1� z

R1

��
1� z

R2

�
1go11g

o
22 �13�

It is now possible to rearrange the variational statement and separate the through-the-thickness
integration, as follows:�

Ao

ÿ�dHL�S, E� ÿ dTL �dx dZ�
�
G

ÿ
duTi �ti � df �D

�
dG � 0 �14�

where Ao is the curvilinear reference surface, t and �D are respectively the surface tractions and electric
displacement on the boundary surface G; dHL of and dTL are the variations of the electric enthalpy and
kinetic energy of the laminate, de®ned as

< dHL, dTL >�
�h
0

< dH, dT > go11g
o
22 dz �15�

and h is the laminate thickness. By combining Eqs. (11) and (15) and integrating through-the-thickness,
the variation of the electric enthalpy of the piezoelectric laminate is obtained as a quadratic expression
of the generalized strain, electric ®eld, and the generalized laminate matrices,

dHL � dSo
i AijS

o
j � dSo

i Bijkj � dkjBjiS
o
i � dkiDijkj

ÿ
XN
m�1

�
dSo

i
�E
m

ikE
m
k � dE m

k
�E
m

kiS
o
i � dkjÊ

m

j E
m
3 � dE m

3 Ê
m

j kj

�
ÿ
XN
m�1

XN
n�1

dE m
k G

mn
kl E

m
l

ÿ
XN
m�1

�
dSo

i
�L
m

i y
m � dym �L

m

i S
o
i � dkjL̂

m

j y
m � dymL̂

m

j kj

�
ÿ
XN
m�1

XN
n�1

dE m
k P

mn
k ym �16�

In the above equation, A, B, and D are the sti�ness matrices; �E
m
and Ê

m
are the piezoelectric matrices;

and G mn are the matrices of electric permittivity of the curvilinear laminate described by Saravanos
(1997).

The generalized thermal matrices are new, and include the thermal expansion matrices �L
m
and L̂

m
,

< �L
m

i , L̂
m

i >� go11g
o
22

XL
l�1

�zl�1
zl

liCm�z� < 1, z > dz, i � 1, 2, 6 �17�

and the pyroelectric laminate matrices Pmn,
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Pmn
i � go11g

o
22

XL
l�1

�zl�1
zl

pkCm�z�Cn�z� dz, k � 1, 2

Pmn
3 � go11g

o
22

XL
l�1

�zl�1
zl

p3Cm
,z�z�Cn�z� dz �18�

where L is the number of plies in the laminate.
The kinetic energy of the laminate takes the form,

dTL � duoi r
A
i _uoi � duoj r

B
j

_bj � dbjr
B
j _uj � dbjr

D
j

_bj, i � 1, . . . ,3, j � 1, 2 �19�

where uoi � fuo, vo, wog and bi � fbx, bZg; rA, rB, rD are the generalized densities, expressing the mass,
mass coupling and rotational inertia per unit area of the laminate (Saravanos, 1997).

2.4. Finite element formulation

The previous formulation of the governing equations in the orthogonal curvilinear system and the
generalized variational statement in Eq. (11) enables the development of structural solutions by using
approximations for the generalized multi-®eld state variables (displacements, rotation angles, electric
potential and temperature) of the following type,

uoj �x, Z, t� �
XM
i�1

uoij �t�Ni�x, Z�, j � 1, . . . ,3

bj�x, Z, t� �
XM
i�1

bij�t�Ni�x, Z�, j � 1,2

fm�x, Z, t� �
XM
i�1

fmi�t�Ni�x, Z�, m � 1, . . . ,N

ym�x, Z, t� �
XM
i�1

ymi�t�Ni�x, Z�, m � 1, . . . ,N �20�

where superscript i indicates the reference surface displacement, rotation angle and generalized electric
potential components corresponding to the i-th in-plane interpolation function Ni�x, Z�: Implementation
of local interpolation functions in Eq. (19) results in the ®nite element based solutions. Combining Eqs.
(6), (7), (9), and (20) results in the strain, electric ®eld and temperature interpolation matrices.
Substituting into the variational equations of motion Eq. (14), and collecting the coe�cients as
mandated by Eqs. (16) and (19), the governing dynamic equations of the structure are expressed in the
discrete matrix form,
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� �Muu � 0
0 0

�8<: f �ugn �f
F
o 9=;�

2664 �Kuu �
h
K FF

uf

i
h
K FF

fu

i h
K FF

ff

i
3775� fug�fF

	 �

�

8>><>>:
�
F�t�	ÿ hK FA

uf

i�
fA
	
ÿ �Kuy �fyg�

QF�t�	ÿ hK FA
ff

i�
fA
	
ÿ �Kfy

�fyg
9>>=>>; �21�

Submatrices Kuu, Kuf and Kff indicate the elastic, piezoelectric and permittivity matrices; Kuy and Kfy

are the thermal expansion and pyroelectric matrices of the structure; and Muu is the mass matrix.
Superscripts F and A indicate the partitioned submatrices in accordance with the sensory (free) and
active (applied) electric potential components, respectively, as explained previously (Lee and Saravanos,
1997). Thus, the left-hand side includes the unknown electromechanical response of the structure fu, fFg,
i.e. the resultant displacements and voltage at the sensors. The right-hand includes the excitation of the
structure in terms of mechanical loads, applied voltages fA on the actuators, applied temperature loads
and electric charge at the sensors QF�t�:

Based on the above formulation, an eight-noded �M � 8� ®nite element was developed with
biquadratic shape functions of the serendipity family. Reduced integration was applied selectively on the
calculation of shear elastic and piezoelectric sti�ness terms, as this has been found to improve the
accuracy of the numerical predictions. These discrete equations can be easily condensated into the
following independent equations for the sensory electric potentials,�

fF
	
�
h
K FF

ff

iÿ1�h
K FA

ff

i�
fA
	
� �Kfy

�fyg ÿ hK FF
fu

i
fug ÿ

�
QF�t�

	�
�22�

and the structural displacements,

�Muu �f �ug �
�
�Kuu � ÿ

h
K FF

uf

ih
K FF

ff

iÿ1h
K FF

fu

i�
fug �

�
F�t�	ÿ �hK FF

uf

ih
K FF

ff

iÿ1h
K FA

ff

i
�
h
K FA

uf

i��
fA
	
�

h
K FF

uf

ih
K FF

ff

iÿ1�
QF�t�

	
ÿ
�h

K FF
uf

ih
K FF

ff

iÿ1�
Kfy

�� �Kuy �
�
fyg �23�

3. Numerical results and discussion

Evaluations of the developed mechanics and applications to various composite structures with
piezoelectric actuators and sensors are presented in this section. In order to represent the location of the
piezoelectric layers, the standard laminate notation is expanded, such that piezoelectric layers are
indicated by the letter p. The properties of both the piezoelectric and composite material are listed in
Table 1. The structural con®gurations which are studied include a clamped plate and a circular
cylindrical shell.
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3.1. Clamped plate

The ®rst case examined consists of a 50:8� 25:4� 5:08 mm3 (08/p ) plate composed of carbon/epoxy
with an attached piezoceramic layer as shown in Fig. 3. The plate is clamped on one side and is
subjected to a uniform thermal load of 508C. The objective of this part of the numerical study is to
verify the accuracy of the current formulation for both the sensory and active response with
corresponding results from a 20-node quadratic piezoelectric continuum element (MSC/ABAQUS,
1996), as well as a previously developed four-node plate element (Lee and Saravanos, 1996) that
implements a full layerwise laminate theory. To the author's best knowledge, the continuum element
neglects pyroelectric e�ects in the piezoelectric formulation, so the pyroelectric constants were
intentionally neglected in both the shell and plate program analysis during the comparisons with the
continuum element. Since the three programs utilize di�erent formulations and elements, each analysis
required di�erent ®nite element meshes. The shell program utilized a 10� 5 mesh with two discrete
layers (one for the carbon/epoxy and one for the piezoelectric). A ®ner 20� 10 mesh was used for the
four-noded plate element with two discrete layers. The continuum element analysis incorporated a 10�
5� 2 mesh, with the two elements through the thickness of the plate corresponding to the two discrete
layers used in the shell and plate programs. All displacements (w ) and electric potentials �f� presented
in this section are along the centerline of the plate �y=b � 0:5� and are nondimensionalized using the
following relationships:

w� � 100w

h
; f� � f d31 10

5

h

where h represents the plate thickness and d31 represents the piezoelectric charge constant.

Table 1

Material properties

Piezoceramic Carbon/epoxy

Elastic moduli (109 Pa)

E11 69.0 142.0

E22 69.0 10.3

E33 69.0 10.3

G12 26.5 7.20

G13 26.5 7.20

G23 26.5 4.29

Poisson's ratio

n12 0.30 0.27

n43 0.30 0.27

n23 0.30 0.20

Thermal expansion coe�cient (10ÿ6/8C)
a11 1.20 ÿ0.90
a22 1.20 27.0

Piezoelectric charge constant (10ÿ12 m/V)

d31 ÿ154.0 0.0

Electric permittivity (10ÿ9 F/m)

E11 � E22 � E33 15.05 0.0266

Pyroelectric constant (10ÿ3 C/m2 8C)
p3 ÿ0.2 0.0

Reference temperature (8C)
To 20.0 20.0

H.-J. Lee, D.A. Saravanos / International Journal of Solids and Structures 37 (2000) 4949±49674958



3.1.1. Sensory response
The response of the plate with the piezoelectric layer operating as a sensor is presented in this section.

In the sensory mode, the piezoelectric layer is free to develop a corresponding electric potential in
response to the thermally induced deformation of the plate through the direct piezoelectric e�ect. The
resulting displacements predicted by the three di�erent codes show almost exact agreement as depicted
in Fig. 4. The corresponding sensory electric potential which develops in the piezoelectric layer is shown

Fig. 3. Geometry of a clamped plate with an attached piezoelectric layer.

Fig. 4. Thermally induced sensory displacements of a (08/p ) clamped plate.
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in Fig. 5. Although the continuum element electric potential results tend to be slightly higher due to the
consideration of the through-the-thickness Poisson's e�ect, there is good overall agreement between the
three elements.

3.1.2. Active response
The piezoelectric layer can also be used as an actuator by applying a voltage di�erential to the

piezoelectric layer and utilizing the converse piezoelectric e�ect to alter the thermal distortion of the
plate. Fig. 6 shows the centerline de¯ection of the plate for three di�erent applied electric potentials

Fig. 5. Thermally induced sensory electric potentials of a (08/p ) clamped plate.

Fig. 6. Displacements under active electric potentials of a (08/p ) clamped plate.
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�fA�). The three codes show almost exact agreement and demonstrate the capability to achieve thermal
shape control by applying electric voltages.

3.1.3. Pyroelectric e�ects
The e�ect of incorporating the pyroelectric constant ( p3) into the analysis is presented in this section.

The previous two cases have neglected the pyroelectric e�ect in order to compare with the continuum
element. Results for the shell and plate elements are presented with the piezoelectric layer in a sensory
mode. Figs. 7 and 8 show the centerline displacements and the centerline electric potential, respectively.
The case with p3 � 0 represents the case without considering pyroelectric e�ects shown in Figs. 4 and 5.
Both ®gures show the almost exact agreement between the plate and shell elements, as well as the

Fig. 7. Pyroelectric e�ects on thermal sensory displacements of a (08/p ) clamped plate.

Fig. 8. Pyroelectric e�ects on thermal sensory electric potentials of a (08/p ) clamped plate.
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signi®cant impact that pyroelectric e�ects can have on the displacement and electric potential of a smart
structure operating in changing thermal environments. This signi®cant in¯uence on the structural
response is caused by the coupling introduced by the piezoelectric layer and can be modeled only
through coupled formulations, such as the present one. Uncoupled formulations are unable to capture
this e�ect and can result in signi®cant errors when modeling thermal piezoelectric structures.

3.2. Cylindrical shell

The second problem studied consists of a [09/p ] (where 08 is along the x axis) circular cylinder with a
radius R � 0:76 m, a L � 1:524 m, and a thickness h � 7:62 mm as depicted in Fig. 9. Due to the
symmetry of the problem, only 1/8 of the cylinder is modeled using a 10� 10 mesh with two discrete
layers (one for the carbon/epoxy and one for the piezoceramic). A clamped±clamped con®guration in
which both ends of the cylinder �z=L � 0 and z=L � 1� are ®xed is examined. The cylinder is subjected

Fig. 9. Geometry of a (09/p ) circular cylinder with an attached piezoelectric layer.

Fig. 10. Di�erent types of applied thermal loads.
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to three di�erent types of thermal loads (a uniform thermal load and two types of sinusoidally varying
temperatures along the hoop direction) as shown in Fig. 10. Results from the current shell element are
presented to investigate the in¯uence of the curved structure on achieving thermal shape control under
the di�erent boundary conditions and applied thermal loads. All displacements (w ) and electric
potentials �f� presented in this section are along the hoop direction at z=L � 0:5 and r=R � 1:0 of the
cylinder and are nondimensionalized using the following relationships:

w� � 100w

h
; f� � f d31 10

4

h

where h represents the cylinder thickness and d31 represents the piezoelectric charge constant.

Fig. 11. Sensory response of a (09/p ) circular cylinder under a uniform thermal load.

Fig. 12. Sensory response of a (09/p ) circular cylinder under a cosine thermal load.
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3.2.1. Sensory response
The sensory response of the cylinder for the three di�erent applied thermal loads (Fig. 10) are

presented in Figs. 11±13. Each ®gure contains results for the sensory displacement �w�� and electric
potential �f�� for two cases to show the e�ects of incorporating the pyroelectric constant in the analysis
(the p3 � 0 case neglects pyroelectric e�ects). Fig. 11 shows the displacement and sensory electric
potential induced from applying a uniform thermal load of 508C. A uniform de¯ection of the cylinder is
achieved, which maintains the original circular shape. The sensory electric potential also shows a
uniform response that corresponds to the displacement. The incorporation of pyroelectric e�ects
produces larger displacements and electric potentials. The results from applying a cosine varying
temperature are shown in Fig. 12. The de¯ection of the cylinder now shows a sinusoidal pattern that
translates into either an oval-shaped or ®gure eight shaped circumferential displacement, depending on
whether pyroelectric e�ects are modeled. The electric potential only displays a sinusoidal pattern when

Fig. 13. Sensory response of a (09/p ) circular cylinder under a double cosine thermal load.

Fig. 14. Displacements of a (09/p ) circular cylinder under a uniform thermal load.
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pyroelectric e�ects are included and becomes almost zero when the pyroelectric e�ect is neglected.
Fig. 13 shows the results of applying a double cosine varying thermal load. A sinusoidally varying
displacement and electric potential pattern is produced which corresponds to an oval-shaped de¯ection
of the cylinder. Once again, incorporating the pyroelectric e�ect leads to increased displacements and
electric potentials.

3.2.2. Active response
The active response of the cylinder under the three applied thermal loads is examined in Figs. 14±16.

Each ®gure shows the displacement of the cylinder for three cases: the sensory thermal de¯ection
resulting when the electric potential of the piezoelectric layer remains free, a grounded thermal
con®guration (zero electric potential is applied on both piezoelectric terminals), and an active thermal
de¯ection when a non-zero electric potential is applied. The magnitude of the applied electric potential

Fig. 15. Displacements of a (09/p ) circular cylinder under a cosine thermal load.

Fig. 16. Displacements of a (09/p ) circular cylinder under a double cosine thermal load.
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remains the same for all three cases, although the form of the electric potential varies to correspond to
the type of thermal load. Fig. 14 shows the de¯ection of the cylinder under a uniform thermal load
(508C). Application of increasing uniform applied electric potentials produces a noticeable decrease in
the sensory thermal de¯ection. Fig. 15 depicts the displacement of the cylinder under a cosine varying
thermal load and shows that although some changes in the overall shape of the cylinder can be obtained
by applying active electric potentials, no signi®cant overall reduction of the thermal de¯ection is
achieved. Fig. 16 illustrates the de¯ections produced under a double cosine variation of the thermal
load. For this case, the double cosine applied electric potential e�ectively minimizes the thermal
de¯ection.

Figs. 14±16 also indicate that a signi®cant reduction in thermal de¯ection occurs between the sensory
and grounded �fA � 0� con®gurations. This reduction is comparable to the thermal de¯ection achieved
by applying the non-zero electric potentials and is attributed to the in¯uence of pyroelectric e�ects on
the response of the cylinder. The modeling of this e�ect is a direct consequence of the coupled
formulation. Under thermal loads, the pyroelectric e�ect has a signi®cant impact on the sensory electric
potential, fF, in Eq. (22). Incorporating this increased sensory electric potential into the structural
displacements, Eq. (23), produces a corresponding e�ect on the de¯ections. However, when the
piezoelectric material is in an active con®guration, the sensory electric potentials are eliminated,
signi®cantly reducing the pyroelectric e�ect on the displacements as shown in Figs. 14±16. While these
results help illustrate the advantages of the current coupled formulation, it also shows a potential
drawback of using piezoceramics as sensors in high temperature applications. Although typical
piezoceramics have higher use temperatures than piezopolymers, the pyroelectric e�ect can lead to
signi®cant changes in the mechanical state of the structure and appropriate design considerations will be
required for e�ective operations in thermal environments.

4. Summary

A multi-®eld laminate theory and mechanics to model the coupled mechanical, electrical, and thermal
behavior of piezoelectric composite shells were described. The corresponding equations of motion were
developed in curvilinear coordinates and implemented into a quadratic shell element. Analytical studies
were conducted to verify the accuracy of the current formulation with a commercial ®nite element code,
as well as with a previously developed formulation. Additional numerical studies have shown the
signi®cant impact of piezoelectric coupling and pyroelectric e�ects on the sensory response of thermal
piezoelectric structures. The response of cylindrical shells under combinations of applied thermal and
electric loadings was quanti®ed and numerical examples illustrate the feasibility of active thermal shape
control on curved structures.
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